PROOSIS e

Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

FROM THE EDITORS

Topping the "what's new" list in this new issue of our
newsletter are the new versions of our products EcosimPro
5.6 and PROOSIS 3.8 released in December 2016. They are a
great leap forward from the earlier versions, since they
provide new tools and language capabilities than can have a
great impact on the users of our products.

It has been developed a tool to test libraries and models
automatically, which may revolutionize how our tools are used
in an industrial setting. Until now, it took users days or weeks
of work just to validate changes to their models, but now they
can automate the task to run hundreds of automatic tests all
night and have the exact comparison with the reference
results the very next morning. This way the impact of any
change can be spotted quickly.

Other important improvements are: a new tool to simulate
directly from the schematic without to create neither a
partition nor a experiment; an exporting tool to the
international standards FMI and ARP4868 for connecting our
models to other tools; new transient solvers that speed up the
simulations up to 50%; and new modelling language features
such as container classes (e.g. dictionaries), acausal equations,
pointers to functions, etc. that makes the modelling work
more flexible.

Also worth noting is the great number of papers given using

our tools presented by our users at the Space propulsion
conference in Rome and the Aeronautical Propulsion

CONTENTS

conference ASME TURBO in Korea. We've updated our
website with more than 25 papers using EcosimPro / ESPSS
and PROOSIS / TURBO.

An interesting example to mention is the Indian company
Team Indus, which has been pre-selected for the prestigious
Google Lunar XPrize for sending a spacecraft to the moon in
2017, landing it on the moon and sending high-def images
back to Earth. Team Indus uses EcosimPro/FluidaPro in
designing such a sophisticated project.

This new year, we face important challenges, such as allowing
our models to interconnect with other tools and standards
used in the industry, real-time simulation, and others that
infuse our team with an ongoing spirit of creativity.

Pedro Cobas (pce@ecosimpro.com)
Head of the Development Team of EcosimPro/PROOSIS
EA Internacional

ECS Model in PROOSIS

ITER cryogenic system simulator

Space Propulsion educational library (LPRES)
SMART_GRID & RENEWABLES library test case
PROOSIS in ASME Turbo, Korea

H H W N N

EcosimPro/ESPSS in the Space Propulsion conference

Team Indus uses EcosimPro/FluidaPro for the Google
Lunar XPrize

(6}

Library validation tool 5

New transient solvers 6
Exporting models with an FMI 2.0 for co-simulation 7
New causal assignment operator 8
Using templates in EL 9
New container classes 10
Class for generating random numbers 12
Sophisticated use of function pointers 13

www.ecosimpro.com

A A
y __# N
y &~ %
EMPRESARIOS AGRUPADOS

\\

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

1. ITER CRYOGENIC SYSTEM SIMULATOR
ANA VELEIRO, EcosimMPrRO/PROOSIS

One of ITER Organization's goals is to develop an integrated
simulator of the different systems making up the ITER
experimental reactor under construction in Cadarache
(France). The simulator is meant to bring together the
individual simulators developed in the different systems and
integrate them. The final purpose of the integrated simulator
is to support the commissioning, the engineering support
during its operation and maintenance, and the training of
operators.

In Cryogenics, ITER has been working for some time on
developing models that can verify the design, design advanced
control algorithms and test the control with hardware
simulations in the loop. With this aim, the simulation
department at EAl has developed dynamic models of the
circuits that cool the ITER magnets and initial models for the
cryogenic pumps and their distribution.

Because of the complexity of the system, |0 has proposed
creating a distributed simulation platform that can integrate
models from the different subsystems and simulate them
jointly. To achieve this goal, EAl has been entrusted with
developing some specific features during 2017 to make this
integration possible.

In the framework of this project, EAl will endow EcosimPro
with the capability of generating OPC UA servers from the tool
itself. This will let models developed in EcosimPro connect to
other tools that have an OPC US interface and create a
distributed simulation platform based on this technology.
Similarly, a synchronization mechanism will be developed
among the different elements and will work on optimizing the
models for this sort of applications.

2. SPACE PROPULSION EDUCATIONAL LIBRARY
(LPRES)

PABLO SIERRA, EcosiMPRO/PROOSIS

Liquid propellant rockets engines are efficient systems of
aerospace propulsion that are part of the content taught at
engineering degrees related to the aerospace sector. The
calculation tools used for it are very sophisticated, require a
large amount of input data and a skilled user to use them, so
they are not suitable for use in a classroom. Therefore, EAI,
together with the Technical University of Madrid (UPM), have
developed the LPRES library (Liquid Propellant Rocket Engine
Simulation) in EcosimPro, which is a simplified library to
simulate liquid propellant rockets engines.

LPRES aims to overcome typical training troubles by creating
an EcosimPro library that can be used in the classroom. That
is, with a short learning curve, and using models and concepts
similar to the ones the student uses in solving the class work
problems on "paper and pencil".

LPRES emulates the elements of the ESPSS professional
libraries, containing components for predicting the steady-
state behaviour of the different possible configurations of a
liguid propellant rocket engine. The main simplifications
included in the LPRES library are: perfect gases and liquids,
phase change limited to some components and analytical
models.

Furthermore, several examples of using the LPRES library are
included in the LPRES_EXAMPLES library. These examples
greatly facilitate the user's learning process. A gas generator
cycle has been made, an expander cycle, a pressurized rocket
engine, and even the cycle of a jet engine. To validate the
results, a comparison of results with the ESPSS toolkit or with
measured values has been made in some examples.

EMPRESARIOS AGRUPADOS

www.ecosimpro.com

Tarik_LOX ==

PROOSIS +#»

Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

: Headloss_1

Ganrbe

et
Headloss_2
= Tank L2
Pump |

Purfp LOX

Turbine
oo e R S at
Reguiatee_2 Regudator_1
B 5 Flomifsen_LHZ
Requistor_¥ 6 g Headloss 3

e LOX nj LHZ
o 0

Flowlftater_LOX

oras®

Theusthonitor

Model with the LPRES library. Simulation of RL10 rocket engine

In conclusion, the library has simple components that make it
easier to use because they work with a small number of data.
Therefore, its learning curve is short and the user does not
have to be an expert to use it. Moreover, LPRES can be
successfully compared with real data and reliable results are
obtained fast. For all these reasons, LPRES is a very useful tool
for educational purposes.

Finally, LPRES has the potential to grow in the next future, by
adding, for example, a mass model, the capability to perform
transient simulations, for which EcosimPro is the ideal
software, or by adding more detail to the description of the
substances.

3. SMART_GRID & RENEWABLES LIBRARY TEST
CASE

Victor PorbomiNGo, EcosiMPrRo/PROOSIS

Energy generation and transport systems are nowadays in an
important renewal process. Smart grids and distributed
energy resources will play the main role in the sector.

The new SMART_GRID & RENEWABLES Library provides the
user with the necessary tools to study energy grids formed by
different plants (at the moment photovoltaic panels, wind
turbines, and diesel generator and, in the future,
hydroelectric, thermosolar, fuel cells,...) working in stand-
alone or grid-connected mode. The user will be able to study
optimum daily generation under different meteorological

conditions, demand behaviour or local and central control
configurations. The library capabilities can be extended by
using other EcosimPro libraries, especially ELECTRIC_SYSTEMS,
CONTROL, MECHANICAL or THERMAL. Also complex
calculations may be created effortless using the EcosimPro
assistants (parametric studies, optimization, Monte Carlo
simulation, etc).

The first test case of the library is already available in
EcosimPro web and is briefly described in the following lines.
The system simulated includes three different energy sources
(photovoltaic panels, wind turbines and diesel backup) which
must satisfy a certain demand which varies during a 24 hours
period. The grid includes, also, a battery bank for energy
storage. The whole system is managed by the “master”
controller, which distributes the generation in the most
efficient way in order to satisfy the demand in every moment
considering the available resources.

The schematic in the figure shows the photovoltaic and wind
generation blocks connected to a certain environmental
conditions: solar radiation, temperature and wind speed. At
the bottom of the schematic, the diesel generator and battery
bank complete the system. All the components are connected
to the correspondent controllers, which warranties that
enough energy is generated so that the demand is satisfied.
This demand profile can be also configured by the user in an
intuitive way.

oe
' |

R

Grid schematic model analized with EcosimPro

The simulation results show the daily active power balance. In
green colour appears the demand behaviour with two
maximum points during the day. In red colour the global
power generation has been plotted. It is possible to see how
the power generation follows the demand. There can be seen
two periods of over-generation and under-generation which
corresponds to battery charge and discharge processes
according to the controllers criterion. In blue colour appears

www.ecosimpro.com

A A
y __# N
y &~ %
EMPRESARIOS AGRUPADOS

EcosimPro

the wind power generation and in orange colour the
photovoltaic power generation, which are used as much as
possible in order to minimize the fuel consumption to the
strictly necessary levels. That is why the diesel power
generation, plotted in grey colour, is so varying. It is only used
to cover the part of the demand beyond the renewable
generation.

= Gria_1 Active_Powsr_Demand sgnal1] - PO_Sersor_1_Dwsel OutPul Powsr P = Grid_1 InPut_Powe: P = Wind_Turtes_1 slec_powor_1 P - AC_AC_1 OutPus_Pewo P

o e

0 56 2 168 24
TIME (hours)

Daily active power balance in the system

4. PROOSIS IN ASME TURBO, KOREA

ALEX ALEXIOU, NATIONAL UNIVERSITY OF ATHENS

The ASME TURBO EXPO 2016 was held in Seoul, Korea. It
gathered 3000 participants from industry, research,
government and academi in Gas Turbines from all over the
world.

It emphasized the significant opportunities for profit,
reliability and performance increases in the turbomachinery
industry which are created from the intersection between the
physical and digital worlds. Modelling and Simulation
capabilities play a central role in exploiting these
opportunities and PROOSIS, as a state-of-the art gas turbine
modelling and simulation environment, is already making a
significant contribution.

PROOSIS participated in this conference through eight (8)
technical papers from the National Technical University of
Athens in Greece, Cranfield University in the UK and ISAE
Toulouse in France.

Specifically, PROOSIS and its TURBO library were used to
model and simulate advanced engine concepts such as the
Open Rotor which is considered the powerplant for next
generation single aisle aircraft. Three papers were presented
on this subject (GT2016-56645, GT2016-57918 and GT2016-

\\

PROOQSIS =

5 :
‘v-‘\ Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

57921) in which PROOSIS was used to develop performance
models of the novel engine components such as the contra-
rotating propellers and turbines and perform studies at
component and engine levels. PROOSIS multi-fidelity
simulation capabilities were exemplified in paper GT2016-
56617 that demonstrated the integration of an in-house two-
dimensional fan code into a PROOSIS turbofan engine model.
In the spirit of the conference’s keynote theme.

PROOSIS was also used to develop the digital ‘twins’ of two
gas turbines in a Combined Heat and Power plant for health
and performance monitoring purposes (GT2016-57722). The
ability of the TURBO library in PROOSIS to deal with transient
phenomena was showcased in GT2016-57257 where model
predictions are compared with engine measurements. Finally,
PROOSIS potential for multi-disciplinary simulations was
highlighted in papers GT2016-57700 and GT2016-57272 that
deal with different aspects of gas turbine solar hybridization.

5. ECOSIMPRO/ESPSS IN THE SPACE PROPULSION
CONFERENCE

The European Space Propulsion Conference 2016 was held in
Rome during the first week of May. It was organised by the
European Space Agency (ESA) and other bodies involved in the
space sector.

A team from EAIl participated in this conference in order to
present details of the products available for space propulsion
simulation, that were displayed at the stand: EcosimPro,
ESPSS (European Space Propulsion Simulation System),
FluidaPro, Pipeligtran, etc.

The EcosimPro/ESPSS toolkit was developed by a European
consortium of companies and universities led by EAl and is
currently the official ESA tool for 0D-1D modeling of space
propulsion systems. ESPSS models propulsion systems for
spacecraft and satellites, including firing processes, fuel tank
evolution, heat exchangers, mechanical systems and
electronic pressure regulators.

Among the new features developed in the libraries over the
last year and presented in this forum are the simulation of a
propulsion system coupled with the dynamics of a spacecraft,
the inclusion of new high precision numerical schemes which
are very efficient in terms of simulation speed, the inclusion of
a module for the definition of the advanced geometry of solid
fuel, the validation of solid and hybrid combustors compared
to experimental results, and the inclusion of new components

A A
y & N
y ___~ %
EMPRESARIOS AGRUPADOS

www.ecosimpro.com

Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

and new options.

EcosimPro/ESPSS is currently being used by the majority of
European aerospace companies for the design of new space
propulsion systems. This can be seen from the large number
of papers presented by companies during the conference that
included models developed using this software and that are
avaible in the Web. EAI presented a paper entitled “ESPSS
Model of a Simplified Combined-Cycle Engine for Supersonic
Cruise”.

ESA and EAI organised the fifth workshop for EcosimPro/ESPSS
users which hosted some 40 engineers from the European
industry. Apart from presenting the latest improvements and
developments underway, a round table was also held at which
users could propose new improvements for future versions.

6. TEAM INDUS USES ECOSIMPRO / FLUIDAPRO
FOR THE GOOGLE LUNAR XPRIZE

Google’s Lunar XPRIZE competition seeks to develop efficient,
economical access to the Moon by promoting technological
innovation by entrepreneurs the world over. The goal of the
competition is to land a vehicle on the Moon’s surface, move
it at least 500 metres and transmit high-definition photos and
video back to Earth. The competition has now entered its final
phase, with 5 teams pre-selected to prepare for launch in
2017.

One of them is Team Indus (from Bangalore, India). This small
Indian startup is developing a project to go to the Moon and
transmit back video images. Team Indus is using our
EcosimPro/FLUIDAPRO tool to perform the fluid-dynamics
analysis of its propulsion system.

We here at EcosimPro are very pleased that they are one of
the teams that has been preselected by Google to compete
for this important prize, and we wish them all the best in this
final phase of the competition.

For more information:

http://lunar.xprize.org/news/blog/meet-5-teams-are-
launching-moon-year

7. LIBRARY VALIDATION TOOL

FERNANDO CARBONERO, EcosiMPrRo/PROOSIS

The latest version of our products comes with a new tool that
is bound to take out users by storm: a tool that can automate
the validation of libraries and models. This new tool can save
days of work by automating a lot of what had to be done by
hand before. Now they can run automatically all night and
have the results waiting for you the next morning.

The same need always arises whenever components are
modified in EcosimPro: knowing if the results are still valid
after making the changes. This task can quickly become too
costly. Each model requires several steps, and if they had to
be repeated on a large number of models, the overall process
would become unwieldy.

EcosimPro 5.6 boasts a new tool for running most of the
processes automatically. With a few clicks of the mouse, we
need only sit back and wait for the results for our analysis.

Let's start by checking if the modeling phase is still valid. First
we'll check the code of all the workspace libraries. That way
we will see if any change in a component's source code affects
other that inherit from it or use it in their topology: name
changes, suppression of a variable, etc.

We'll also find out if our old partitions are still valid or if some
of them need editing. And finally, we'll check to see if the
experiments are still compiling with those changes.

In the simulation phase, the engineer time saved is
appreciable. With dozens if not hundreds of models to run,
the user would have to spend hours in front of the computer
until the task is finished by hand. With this tool we can start it
up and kick back until all the models have finished.

If any model doesn't give the expected results, we can quickly
and comfortably access a comparison of the results with
respect to the references.

The report gives us information on how many calculations
were done (transient, stationary) and their results. Similarly, it
says if any variables chosen for the comparison are no longer
in the model.

www.ecosimpro.com

A A
y __# N
y &~ %
EMPRESARIOS AGRUPADOS

“EcosimPro |§]

‘v-‘\ Modelling and Simulation Software

There are two types of comparisons. First there is a statistical
mode that stores the statistical values of the variables
selected for comparison. This mode is especially useful when
the number of resultant points per variable is high, such as in
a transient.

We can also go further with a thorough comparison of each
value obtained per variable. For instance, in a parametric
study based on stationary calculations.

So what references do we compare against? This turns out to
be one of the simplest processes. We start off with a library
we trust. In other words, we know it works and works well.

We choose the models to validate, we set the parameters and
let the program churn out all the results we will need as
reference for both modeling and simulation.

There is a possibility of configuring the parameters of the
workspace, even getting an itemized breakdown by
configuring an individual model, variable by variable if
necessary.

In short, we have a tool we can use to validate our models or a
subset of them quickly and efficiently. And we can do this
process with just a few clicks as many times as we need to,
saving hundreds of hours of engineering.

4 X Do st actions (Conscie)
o ClearBbasties

7 G it i Gromp wisbon: Do ol actasss (Cosisls)

3 Total acciona: §
2 X Vadste beasies Acious net O3
4 X Compite workspace exparimants Rate OK: 0%
¥ Comple expesiments of bbrary MATH' Total setion time: [141 3721 |
¥ Compile psmants of Sbrary PORTS, U
¥ Cemple expasments of brary 'CONTROL O - Chear Bhrarien (Total 7)[487]
¥ Comple expesments of Borary ELECTRICAL’
¥ Compiy expommants of baury THERKAL Bl OK . Compie workspace Libraries (Total 7] Ly Himn |
¥ Comple expesiments of bbary ELECTRICAL_EXAMPLES'
4 X Comple psmants of Sbrary DIFAULT U ot O - Validate ibevrien (Tonat 7. 0K 1) Hhoma |
¥ Compie experiment “sircraGem delsstexgl’ of Sbeary TEFAULT L0 _ e i
v 7 - Sl defach opi of Souary DEFAAT L ot O . Complle woekspace experiments (Touat 7. X0k 1)] 75 02ms |

' Compile erperimant "cir_1, 2 defeuit ol of ibrary TEFAULT A8
% Compie eperiment “cirout defiitegd’ of borary TEFSULT LS
M Creating moddl ieferences
¥ Run models of bhaary MATH
ol B sncrte ks BOATS L

St K - Crearing madel veferenses (Tt 7. X0k 1)] 2 S9ms]

L

e O e] Frdbar P g cose

\\

PROOSIS ¥

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

I = = =
e R —
Libwary: T
Component:
Parbhon: dels
Expenment:
Migded varushies bo be checiesd
Comparncn wrtings ¥
Harne Type Category
" (5] REAL DATUM
Caleulstion resudts. i REAL DATURE
Russ mvtocled ml REAL DATUM
md REAL DATURM
x REAL DYMARC
¥ REAL DYMAREC
Wanphie stataos dats
Hamni alue
a 2
@ Festures
Tolersnce a5
Relstrod armer comechon: 1 T88s-08
b relathee Erner
Statistic Varisbles
¥ Intial Value HRg
o | Forsarl Valhuss Hu1g
o Mg H1g
Minirmagr: L7600 A6 1 e - IR
Mgmnums L TSI HEE I e 05
| Caesd | o

i = =

8. NEW TRANSIENT SOLVERS

FERNANDO PUECH, EcosiMPrRo/PROOSIS

EcosimPro 5.6.0 now includes the new transient solvers IDAS,
IDAS_SPARSE, CVODE_AM, CVODE_BDF and
CVODE_BDF_SPARSE. IDAS and CVODE belong to be SUNDIALS
package of solvers (SUite of Nonlinear and
Differential/ALgebraic equation Solvers) developed by the
“Center for Applied Scientific Computing Lawrence Livermore
National Laboratory”. IDAS is a general-purpose solver for the
initial value problem in systems of differential algebraic
equations, also known as DAEs.

IDAS is based on the DASPK solver and uses a BDF integration
method of variable order and variable coefficients. CVODE is a
problem solver of stiff and nonstiff initial values of ordinary
differential equations and is based on the VODE and VODPK
solvers. Available in EcosimPro is CVODE_AM, ideal for
nonstiff problems, and whose integration method is variable
order and variable step based on the Adams-Moulton
formulas, whereas CVODE_BDF, ideal for stiff problems, uses a
variable order, variable step method based on BDF (Backward
Differentiation Formulas).

A A
y & N
y ___~ %
EMPRESARIOS AGRUPADOS

www.ecosimpro.com

vA_"

<4 EcosimPro g

Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

EcosimPro also includes the sparse versions of the previous
solvers as a major improvement over the DASSL-SPARSE
solver. First because they use a multi-thread method in the
internal iterations and second because they use an optimized
version to obtain Jacobian scattering.

What do all these improvements mean? Shorter simulation
times, with all the benefits for the user accordingly. The
following graph compares the simulation times using
EcosimPro 5.6.0 and the compiling platform win64_vc2015
from different models of ESPSS 3.1.0. In the experiments the
relative error (REL_ERROR) and absolute error (ABS_ERROR)
are set at 1.0x1E-6.

Simulation time (less is better)

H DASSL_SPARSE IDAS_SPARSE m CVODE_BDF_SPARSE

120%

100%
80% 28 92% 90%
60%
40%
0%
N N 2
& & S
¢ . '
R S $
@ @ 5
2 ¥ &
& & L
bo“l Q,’b(\ Q7
) © e
<8 & S
2 e 2
< S &
& R s
¥ &

The data in this chart show that the new solvers are a
substantial improvement over the previous generation
(especially CVODES). Give them a try!

PROOSIS -#>

9. EXPORTING MODELS WITH AN FMI 2.0
INTERFACE FOR CO-SIMULATION

FERNANDO PUECH, EcosiMPrRo/PROOSIS

EcosimPro 5.6.0 introduced the ability to export a model using
the FMI 2.0 standard for co-simulation. What is FMI 2.0? A
standard meant to facilitate communication between
simulation models developed in different tools. The standard
has the following basic concepts:

e FMI, which stands for Functional Mock-up Interface, this is
a well-defined ANSI C interface. It may be used by a
simulation environment to load one or more models made
by other simulation tools.

e FMU, which stands for Functional Mock-up Unit, this is a
compressed file that in turn contains a model description in
XML format and the executable files that implement the
functions defined in the FMLI. It can be used as a slave
model in a simulation environment.

® There are two types of FMUs: FMI for co-simulation: the
model has its own solver / integrator. This is the type of
FMUs that EcosimPro generates. FMI to exchange models:
the model waits for the simulator to carry out the
numerical integration.

To export the EcosimPro models using FMI 2.0 as the
interface, we set up a simple experiment with rules that are
explained in the documentation and then we use the wizard
to select the option to export to FMI.

Once we have the experiment and have run it at least once,
we can launch the wizard to create DECKs by right-clicking on
the experiment. As the startup screenshot shows, the wizard
lets you enable the FMI 2.0 interface. The next step is to
choose the input and output variables to be published, and
lastly, to press the "generate" button. Clearly, in a few simple
steps the wizard generates the file model xxx.fmu which in
turn can be uploaded into any tool that can read FMI 2.0 for
co-simulation.

www.ecosimpro.com

A A
y __# N
y &~ %
EMPRESARIOS AGRUPADOS

<EcosimPro
A_l\

MODEL ENGINE MODEL
DESCRIPTION

AL B L4

<D Focromuomsa wrsrce |

A0mMmQo

MASTER
SIMULATOR
C/C++

The best thing about this new capability is that when you have
to share models with a client who does not have EcosimPro,
you don't have to transpose the model to a different language
or tool, which thus means major savings in time and money
when developing models.

10. NEW CAUSAL ASSIGNMENT OPERATOR

Until now, EcosimPro/PROOSIS let only non-causal equations
be entered in the CONTINUOUS block of components and
ports. But with this new version, you can write causal
equations that dictate how a variable is to be calculated.

From now on, when you write equations in the CONTINUOUS
block of a component or port, the "=" and ":=" operators can
be used indistinctly. Use the "=" operator whenever you want
to express the equation in totally non-causal format (as
always); this means that EcosimPro can transform this
equation symbolically as it sees fit; for example, given the
following equation:

x= sin(y)

The sorting algorithm can write this equation (depending on
the unknown being calculated) in one of two ways:

1 x=sin(y)
2 y=asin(X)

This is very advantageous and gives great flexibility to the tool

Modelling and Simulation Software

\\

PROOSIS -#5

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

so that the same model can be used in very different
scenarios. However, sometimes the modeler does not want an
equation to be transformed symbolically but to keep the
original format, which is why we have added the ":=" operator

X = sin(y)

We are instructing the sorting algorithm not to symbolically
transform the equation and to keep the left-hand and right-
hand parts intact. In this case, at the end of the sorting of the
equations, this equation either calculates x explicitly or it
converts it to a residue:

1 x=sin(y)
2 residue= () — (sin(y))

In these cases, this mechanism prevents a symbolic
transformation that could jeopardize convergence or we may
simply always want this equation to calculate this variable. We
are imposing causality on the equation.

Another difference between and ":=" is that the former
operator allows both "expression= expression" and also
"variable= expression" while the latter only allows "variable=
expression”.

For example, this is correct:
X +y = 24%z
but it is not correct to write:

X +y = 24*z -- Compilation error

That is because causal equations must always be used to
calculate a specific variable.

The operator ":=" is a more flexible alternative to the prefix
EXPL that searches for an equation to calculate a variable. For
example, if we have a component like:

COMPONENT test
DECLS
EXPL REAL x
REAL vy
CONTINUOUS
x= 34.5*y + cos(TIME)
END COMPONENT

A A
y & N
y ___~ %
EMPRESARIOS AGRUPADOS

www.ecosimpro.com

PROOSIS +#»

Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

Until now, this mechanism was the one used to find an explicit
equation for calculating x. The problem was when there were
two equations, such as:

COMPONENT test
DECLS
EXPL REAL x
REAL y
CONTINUOUS
x= 34.5*y + cos(TIME)
x= 5.3*y
END COMPONENT

In this case it gave the following error when making the
partition:

*** Error 1 (code 925 ES1:99:925:01:98) ***
X =53%*y

Variable "x" is already calculated in:

X = 34.5 * y + cos(TIME)

The equations system can be redundant.

“w,_n,

It is best to use “:

COMPONENT test
DECLS
REAL X
REAL y
CONTINUOUS
X 1= 34.5*y + cos(TIME)
x= 5.3*y
END COMPONENT

In this case it forces us to calculate x with the first equation.
Therefore, from now on, we recommend not using the EXPL
prefix and using this new assignment operator instead, which
is more intuitive and robust.

11. USING TEMPLATES IN EL

A new sophistication in EcosimPro 5.6/PROOSIS 3.8 is the use
of templates. They allow to define new data types base on
some predefined template classes provided in the tool
(container classes).

When template classes are used in EL, the TYPEDEF statement
can be used to define a new type of class inherited from the
template class applied to a specific class. For example, we
could use the template class EVector<className> to create a
vector of objects of type “className” and define:

TYPEDEF CLASS
EVector<className>

newClassName IS A

The new “newClassName” class can be used from this point on
as any other class and represents a vector of objects of the
“className” class. Following is an example with a simple class
called "Employee" with two attributes "name" and "phone",
and with a vector of objects of this type:

CLASS Employee
DECLS
STRING name
INTEGER phone

END CLASS
TYPEDEF CLASS VectorEmployees IS_A
EVector<Employee>

From this moment on, the class "VectorEmployees" can be
used just like the others. For instance, we can add a new
employee the same way as in the EVector class:

OBJECTS
VectorEmployees v
Employee emp

BODY
emp.name= “Jeff”
emp.phone= 36474778
v.append(emp)

We see how a new class has been defined inherited from a
container class that can contain complex objects. From here
on, it is even possible to make new template classes based on
others, such as

TYPEDEF CLASS dictionaryEmployees IS_A
EDictionaryString<VectorEmployees>

Now we have a new class we can use in our EL code. For
example:

OBJECTS
VectorEmployees v1, v2
dictionaryEmployees dict
Employee emp

BODY
emp.name= “Jeff”
emp.phone= 36474778
v1._append(emp)
emp.name= “Bill”
emp.phone= 56363326
v2 ._.append(emp)
dict.set(“plant”,vl)
dict.set(“office”,v2)

www.ecosimpro.com

A A
y __# N
y &~ %
EMPRESARIOS AGRUPADOS

EcosimPro

We see we can create more and more sophisticated classes
using the templates and container classes. This gives a huge
added value to EL by being able to create new types of data
that represent complex structures in memory.

12. NEW CONTAINER CLASSES

EcosimPro 5.6/PROOSIS 3.8 provides new powerful container
classes. The new container classes are generally an alternative
to using arrays in EL. At the moment, a user can use an array
to store a data vector (for example REAL v[4]) or a matrix (e.g.
REAL v[4,4]), but has the limitation of not being dimensionable
dynamically. Users can rely on these more advanced
containers that allow the automatic handling of memory. On
the other hand, their syntax is less intuitive, since access to
them is done through class methods (e.g. v[3] vs v.at(3)).
Users will need to determine whether it is better to use an
array or a container of this type for a specific application.

There are essentially two types of container classes:

e Sequential containers: Classes for the adjacent storage
within the memory. These are the EVector and EMatrix
classes.

¢ Associative containers: Classes with no adjacent storage of
information in the memory and that are always arranged
with a key. These are the EDictionary and ESet classes.

These classes have been designed with three goals in mind:

e Simplicity of use
¢ Smart handling of memory
e Maximum efficiency in computational terms

The new containers are based on the standard STL library of
C++, so they benefit from the latest advances of C++ compilers
and from the millions of users throughout the world who
efficiently use them on thousands of projects. The interface is
not exactly the same because the one for EL has been greatly
simplified.

All the container classes can contain the basic types of EL
(REAL, INTEGER, STRING, BOOLEAN, ENUM) as objects of any
class created in EL. This is important because it lets us create
complex data structures easily and efficiently.

\\

PROOQSIS =

5 :
‘v-‘\ Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

EVector vectors (based on the std::vector in C++) are
sequential containers that are similar to the one-dimensional
arrays of EL ((eg REAL v[3]), but they are smarter to handle the
memory. Adjacent storage of objects in the memory shall be
used. EVector handles its elements dynamically and allows
direct access to each element based on an index. Elements
can be added at the end or deleted quickly. However,
inserting objects between two elements is not optimum
because, internally, it is necessary to move all the objects to
make way for the new ones. A vector does not need to define
the initial size; when we insert an element into a position, it
resizes internally to have at least those elements, for example:

DECLS
REAL value
OBJECTS
EVectorReal v
BODY
v.set(25, 3.1415)
value= v.at(25)

In this example, the value 3.1415 is inserted into position 25
and then this value is taken to a variable with the at() method.
Adding an element at the end is also easy using:

v.append(562.3)

The EMatrix class (based on std::vector <std::vector>> from
C++) represents a two-dimensional matrix with several rows
and columns. They are sequential containers that are similar
to the two-dimensional arrays (eg REAL v[4,5]), but with
significant improvements for the dynamic use of memory.
Adjacent storage of objects in the memory shall be used.
EMatrix also automatically manages the size in memory as
EVector. This makes it simple to do quite sophisticated things,
such as:

OBJECTS
EMatrixReal mr

INIT
mr .set(800,500,888)
mr.clear()
mr.assign(790,467,5)
mr.replace(100,100,4)
value= mr.at(400,400)

This code does the following:

A A
y & N
y ___~ %
EMPRESARIOS AGRUPADOS

www.ecosimpro.com

Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

e it set the value 888 in the index (800,500), so the matrix
resizes in memory to that capacity.

¢ |t deletes the matrix from the memory completely.

e |t creates a new matrix associated with mr with the
dimensions [790,567] and initializes all the values of the
matrix to 5.

e |t replaces the value in the index (100,100) to 5

e It takes the index value (400,400) to the value variable.

The EDictionary class (similar to std::map<key,value> in C++)
represents a dictionary that is an associative (non-sequential)
container that orders its elements according to its key. Each
dictionary element is a pair <key,value> where the key can be
of type types: STRING or INTEGER, as users will always access
the dictionary via one of these keys. The value can be of any
basic type (REAL, INTEGER, STRING, BOOLEAN), enumeration
or object of another class defined in EL.

The main advantage of associative containers (EDictionary and
ESet) is that finding an element is very fast, as it has
logarithmic complexity (while in EVector and EMatrix it is
linear). For example, if there were 1000 elements in an
EDictionary, it would take an average of 10 attempts to find a
given element, while searching in EVector would take an
average of 500.

Various classes of dictionaries are predefined depending on
the type of key and the value we wish to store. The keys are
always either a STRING or an INTEGER. For example, the
following code lets us create a telephone list and then search
it:

DECLS
INTEGER phone

OBJECTS
EDictionaryStringlnt phones

INIT
phones.set(*“Josua’”,35663678)
phones.set(“Alan”, 37665667)
phones._set(“Bill”,39683478)
IF (phones.find(“Josua”,phone) == TRUE)THEN

WRITE(*“Found Josua\n’)

END IF

The ESet class (equivalent to std::set<keyValue> in C++)
represents an sorted set of objects. EL allows sorted lists of
values of basic EL types such as REAL, INTEGER, STRING or
enumeration. When a value is entered into an ESet object it is
automatically sorted internally and no duplications are
allowed.

In this example a function is programmed that uses a sorted
set of strings in an ESet and carries out different operations:

FUNCTION NO_TYPE testSetString()
DECLS
STRING v
OBJECTS
ESetString esr
BODY
esr._insert('set")
esr.insert("'dictionary")
esr.insert(''vector™)
esr.insert("matrix")
WRITE("ESetString(size %d): %s\n",
esr.size(),esr.asString())
IF (esr.find('vector'™) == TRUE) THEN
WRITE(*"Found value vector in ESet\n")
ELSE
WRITE("'Not found value'™)
END IF
WRITE("Erase item\n")
esr.erase('dictionary')
WRITE("'ESetString(size %d): %s\n",
esr.size(),esr.asString())
FOR(i IN 1,esr.size())
esr.get(i,v)
WRITE(""Pos=%d value=\"%s\'"\n",i,Vv)
END FOR
END FUNCTION

The output of this function is:

ESetString(size 4):
“set', ''vector'}
Found value vector in ESet

Erase item

ESetString(size 3): {"matrix", "set", "vector'}
Pos=1 value="matrix"

Pos=2 value="'set"

Pos=3 value="vector"

{"dictionary", "matrix",

As you see, you can insert values, write the entire object,
search for elements, delete, list in sequential order, etc. and
the best of all is that all the memory management is done
transparently and fully optimized.

In this article we have not gone into the possibility of storing
complex objects, and even more importantly, a container can
in turn have container elements, for example an EDictionary
can contain EMatrix type elements and each EMatrix element
can in turn be an EVector and so on. With this, you can create
highly sophisticated structures in memory that up to now had
been impossible to do in EL. Please refer to the Modelling
Language Manual for more detailed information and
examples.

www.ecosimpro.com

A A
y __# N
y &~ %
EMPRESARIOS AGRUPADOS

EcosimPro

13. CLASS FOR GENERATING RANDOM NUMBERS

The new version of EcosimPro/PROOSIS has a new class called
EVectorRandom that makes it very simple to generate random
numbers. For example:

FUNCTION NO_TYPE randoml1()

OBJECTS
ERandomVector rn, rp, rc

BODY
rn.populate(10, DISTR_NORMAL,7, 0.2)
WRITE("'NORMAL= %s\n",rn.asString(4))
rp.populate(10, DISTR_POISSON,10)
WRITE("'POISSON= %s\n",rp.asString(4))
rc.populate(10, DISTR_CHI_SQUARED ,6)
WRITE('CHI_SQUARED= %s\n",rc.asString(4))

END FUNCTION

The output of this function is:

NORMAL= 7.223 6.945 7.054 7.126 7.101 7.135
7.11 6.833 7.052 7.015

POISSON= 7 11 11 10 13 15 12 7 11 9
CHI_SQUARED= 7.367 7.133 7.084 9.08 5.364 9.687
7.117 4.294 13.46 3.015

The populate() method is used to generate N numbers using
different distributions with their corresponding parameters. In
this example, we have generated numbers using the Normal,
Poisson and Chi-Squared distributions. The distributions
available are:

Normal, Log_Normal, Uniform, Uniform_Int, Bernoulli,
Binomial, Geometric, Poisson, Exponential, Gamma, Chi-
Squared, Cauchy, Fisher_F, Student_T and Weibull.

If you want the generated numbers to reproduce, you can use
a seed, such as:

FUNCTION NO_TYPE random4()

OBJECTS
ERandomVector rv

BODY
rv.setSeed(456)
rv.populateSorted(5, DISTR_NORMAL,7, 0.2)
WRITE("'rv= %s\n",rv.asString(4))
rv.clear()
rv._populateSorted(5, DISTR_NORMAL,7, 0.2)
WRITE("'rv= %s\n",rv.asString(4))

END FUNCTION

\\

PROOQSIS =

5 :
‘v-‘\ Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

The output is:

rv= 6.869 6.949 6.951 7.175 7.224
rv= 6.869 6.949 6.951 7.175 7.224

We see how the setSeed() method lets us add a common seed
that yields the same values in two different calls.

The class also has methods that give typical values of any
statistical distribution: average, standard deviation, median,
variance, skewness, kurtosis, range, minimum and maximum
values, etc. There is even a method that returns a summary in
string mode that we can print out: statAsString(). It also has
other methods such as histogram() that outlines the
distribution by interval. Let's see an example:

FUNCTION NO_TYPE random7()
OBJECTS
ERandomVector rv
BODY
rv._populate(1000, DISTR_NORMAL,7, 0.2)
WRITE("'rv statistics= %s\n",
rv._.statAsString(4))
WRITE("'rv histogram=\n%s\n",
rv_histogram(10,50,4))
END FUNCTION

This function generates 100 random numbers using a normal
distribution with an mean of 7 and standard deviation of 0.2.
It then prints a summary of the standard statistics of the
distribution generated and then prints a histogram that splits
it into 10 segments:

rv statistics= Mean: 7.002 Std Dev: 0.2009
Minval: 6.353 MaxVal: 7.587 Range: 1.234
Skewness: -0.07264 Kurtosis: 3.023

Median: 7.006 Mode: 7 Variance: 0.04038

rv histogram=

* (0-.6%)

B (2 R 6%)

xxxxxxxxxxxxxx (15.2%)

(21.1%)
“““““““““ (25%)
(17.2%)

(9.2%)
*hkhk (2_7%)
*(0.4%)

From now on, EcosimPro/PROOSIS users can use this new
class to perform a number of types of calculations based on
random numbers such as Montecarlo studies.

A A
y & N
y ___~ %
EMPRESARIOS AGRUPADOS

www.ecosimpro.com

- -

PROOSIS +#»

Modelling and Simulation Software

EcosimPro/PROOSIS - Newsletter N2 13 - February 2017

The parametric wizards also make use of this class to
automatically generate parametric studies based on random
input values. This is done in a way that is transparent to users.

14. SOPHISTICATED USE OF FUNCTION POINTERS

EcosimPro 5.6/PROOSIS 3.8 introduces the sophisticated use
of function pointers that open up a new world in EL
programming. We have kept the interface as simple as
possible for using function pointers efficiently.

The best is to see it in an example. Let's create a function
ptrFun() that calls fCallre() and sends it a function pointer as
its argument, which the latter will in turn use to call the
function it points to.

First we have to define the type of function to be pointed to:

TYPEDEF FUNCTION REAL ftype2(REAL a, REAL b)

With this we have created a type of function pointer called
ftype2 that has two REAL-type arguments and returns a REAL.
This is important because if we then give it a function that
does not have these arguments, it will give us a compilation
error.

Now we create the function fCallre() giving it the function
pointer type argument ftype2, which we do with the syntax
FUNC_PTR<ftype2>:

FUNCTION REAL fCallre(FUNC_PTR<ftype2> T2,REAL
a, REAL b)
DECLS
REAL val2
BODY
val2= f2(a,b)
RETURN val2
END FUNCTION

--call the function 2 here

This function is limited to calling the f2 function it was given as
an argument.

Now we define two functions that fulfill the prototype
<ftype2>: one that returns the sum of a+b and the other the
returns the difference of a-b:

FUNCTION REAL TAdd(REAL a, REAL b)
BODY

RETURN a+b
END FUNCTION

FUNCTION REAL TSubs(REAL a, REAL b)
BODY

RETURN a-b
END FUNCTION

Lastly, we define a final function ptrfun() that makes 2 calls to
fCallre(): the first one gives it a function pointer fAdd() as the
argument and the other is passed to fSubs() and we print out
the results:

FUNCTION NO_TYPE ptrfun()
DECLS
REAL res=0
BODY
res= fCallre(fAdd,50,20)
WRITE(*'50+20= %g\n"',res)
res= fCallre(fSubs,50,20)
WRITE(*'50-20= %g\n"',res)
END FUNCTION

As expected, the output is:

50+20= 70
50-20= 30

In other words, the function fCallRe() behaves differently
depending on the pointers we give it. Much more
sophisticated things can be done using components and
classes, but that is explained in more detail in the Modelling
Language with many examples.

www.ecosimpro.com

A A
y __# N
y &~ %
EMPRESARIOS AGRUPADOS

EA Internacional S.A.
Magallanes, 3 Madrid
28015 Spain
E-mail: info@ecosimpro.com
URL: http://www.ecosimpro.com
Phone: +34 91 309 81 42
Fax: +34 91 591 26 55

AR A
A AR
y £
EMPRESARIOS AGRUPADOS

EDITED BY: DAPHNE-DIANA JIMENEZ
REVIEWED BY: ANGEL BARRASA

PROQSIS ¢

Propulsion Object Oriented Simulation Software

EcosimPro

Modelling and Simulation Software

